Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 88(5): 716-722, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37331717

RESUMO

Cell-surface display using anchor motifs of outer membrane proteins allows exposure of target peptides and proteins on the surface of microbial cells. Previously, we obtained and characterized highly catalytically active recombinant oligo-α-1,6-glycosidase from the psychrotrophic bacterium Exiguobacterium sibiricum (EsOgl). It was also shown that the autotransporter AT877 from Psychrobacter cryohalolentis and its deletion variants efficiently displayed type III fibronectin (10Fn3) domain 10 on the surface of Escherichia coli cells. The aim of the work was to obtain an AT877-based system for displaying EsOgl on the surface of bacterial cells. The genes for the hybrid autotransporter EsOgl877 and its deletion mutants EsOgl877Δ239 and EsOgl877Δ310 were constructed, and the enzymatic activity of EsOgl877 was investigated. Cells expressing this protein retained ~90% of the enzyme maximum activity within a temperature range of 15-35°C. The activity of cells expressing EsOgl877Δ239 and EsOgl877Δ310 was 2.7 and 2.4 times higher, respectively, than of the cells expressing the full-size AT. Treatment of cells expressing EsOgl877 deletion variants with proteinase K showed that the passenger domain localized to the cell surface. These results can be used for further optimization of display systems expressing oligo-α-1,6-glycosidase and other heterologous proteins on the surface of E. coli cells.


Assuntos
Escherichia coli , Sistemas de Secreção Tipo V , Escherichia coli/metabolismo , Sistemas de Secreção Tipo V/metabolismo , Glicosídeo Hidrolases/metabolismo
2.
Biochemistry (Mosc) ; 87(9): 932-939, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36180989

RESUMO

The autotransporter AT877 from Psychrobacter cryohalolentis belongs to the family of outer membrane proteins containing N-terminal passenger and C-terminal translocator domains that form the basis for the design of display systems on the surface of bacterial cells. It was shown in our previous study that the passenger domain of AT877 can be replaced by the cold-active esterase EstPc or the tenth domain of fibronectin type III (10Fn3). In order to increase efficiency of the 10Fn3 surface display in Escherichia coli cells, four deletion variants of the Fn877 hybrid autotransporter were obtained. It was demonstrated that all variants are present in the membrane of bacterial cells and facilitate binding of the antibodies specific against 10Fn3 on the cell surface. The highest level of binding is provided by the variants Δ239 and Δ310, containing four and seven beta-strands out of twelve that comprise the structure of the translocator domain. Using electrophoresis under semi-native conditions, presence of heat modifiability in the full-size Fn877 and its deletion variants was demonstrated, which indicated preservation of beta structure in their molecules. The obtained results could be used to optimize the bacterial display systems of 10Fn3, as well as of other heterologous passenger domains.


Assuntos
Escherichia coli , Sistemas de Secreção Tipo V , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Escherichia coli/genética , Escherichia coli/metabolismo , Esterases/metabolismo , Fibronectinas/metabolismo , Proteínas de Membrana/metabolismo , Psychrobacter , Sistemas de Secreção Tipo V/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...